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Abstract At present, there are two levels of approximation
to compute the dual descriptor (DD). The first uses the total
electronic density of the original system along with the
electronic densities of the system with one more electron
and one less electron, but this procedure is time consuming
and normal termination of computation of total electronic
densities is not guaranteed. The second level of approxima-
tion uses only the electronic densities of frontier molecular
orbitals, HOMO and LUMO, to avoid the former approxi-
mation; however, the orbital relaxation implicitly included
in the first level of approximation is absent in the second,
thus risking an incorrect interpretation of local reactivity.
Between the lowest occupied molecular orbital (LOMO)
and the highest unoccupied molecular orbital (HUMO), a
framework to provide an expression of the DD in terms of
the electronic densities of all molecular orbitals (except
HUMO and LOMO) has been proposed to be implemented
by programmers as a computational code. This methodolo-
gy implies another level of approximation located between
the conventional approximation methods mentioned above.
In this study, working equations have been oriented toward
molecular closed- and open-shell systems. In addition, the
mathematical expression for a closed-shell system was ap-
plied to acetylene in order to assess the capability of this
approach to generate the DD.

Keywords Local reactivity . Dual descriptor . Nucleophilic
Fukui function . Electrophilic Fukui Function . Expansion in
terms of electronic densities of molecular orbitals .

Closed-shell system . Open-shell system

Introduction

When chemical reactions are governed by covalent rath-
er than by electrostatic interactions, a local reactivity
descriptor (LRD) coming from conceptual density func-
tional theory called the Fukui function [1–4] is recom-
mended as a useful tool to find preferred sites on a
molecule to donate or capture electrons. The Fukui
function is defined in terms of the derivative of ρ(r)
with respect to N; through a Maxwell relation, the same
descriptor is interpreted as the variation of the chemical
potential, μ, with respect to the variation of the external
potential, υ(r):

f ðrÞ ¼ @ρðrÞ
@N

� �
uðrÞ

¼ dμ
duðrÞ

� �
N

: ð1Þ

Several higher-order reactivity descriptors have been
established [5]. The chemical potential μ characterizes the
tendency of electrons to escape from the equilibrium system
[6–8]; meanwhile, the external potential, υ(r) [8, 9] is cre-
ated by a specific number of nuclei with their respective
electric charges. The function f(r) reflects the ability of a
molecular site to accept or donate electrons. High values of
f(r) are related to high reactivity at point r [8, 9]. In addition,
the Fukui function must satisfy the following normalization
condition:ð
all space

f ðrÞdr ¼ 1: ð2Þ
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From Eq. (1), if paying attention to ρ(r) and its depen-
dence on N rather than to μ and its dependence on υ(r), the
analysis will center on electronic densities and not on chem-
ical potentials. Since the number of electrons N is a discrete
variable [10], a first level of approximation called finite
difference approximation (FDA) implies the use of right
and left derivatives of ρ(r) with respect to N to compute
Eq. (1), thus providing a couple of working equations:

f þðrÞ ¼ @ρðrÞ
@N

� �þ

uðrÞ
¼ ρ

Nþ1
ðrÞ � ρ

N
ðrÞ ð3Þ

f �ðrÞ ¼ @ρðrÞ
@N

� ��

uðrÞ
¼ ρ

N
ðrÞ � ρ

N�1
ðrÞ ð4Þ

where ρ
Nþ1

ðrÞ; ρN
ðrÞ and ρ

N�1
ðrÞ are the electronic densities

at point r for a system with N+1, N and N−1 electrons,
respectively. Although the finite difference approximation is
exact for the exact density functional as Levy pointed out
[11], this mathematical procedure is hereafter referred to as a
first level of approximation because is not strictly speaking a
derivative due to the discrete nature of N, thus requiring the
use of a numerical derivative from the left and right. The
first numerical derivative, f +(r), is associated with reactivity
for a nucleophilic attack so that it measures the intramolec-
ular reactivity at site r toward a nucleophilic reagent. The
second, f −(r), is associated with reactivity for an electro-
philic attack so that this function measures the intramolec-
ular reactivity at site r toward an electrophilic reagent [12].
Nevertheless, this set of working equations does not prop-
erly describe the local reactivity in highly symmetric mole-
cules. Hence, this article attempts to establish a correct
description of local reactivity based on this level of approx-
imation. For open-shell systems, a working equation based
on the first level of approximation has been adapted to the
molecules’ symmetry [13].

The second level of approximation implies the use of
densities of frontier molecular orbitals (FMOs), ρ

LUMO
ðrÞ

(LUMO density) and ρ
HOMO

ðrÞ (HOMO density), which are

taken into account because it has been shown [12, 14] that
when orbital relaxation is irrelevant, there is a direct relation
between f +/−(r) and the density of the appropriate FMO, thus
avoiding calculations of the system with N+1 and N−1 elec-
trons. This is the frontier molecular orbital approximation
(FMOA) also called the frozen orbital approximation (FOA):

f þðrÞ ’ ρ
LUMO

ðrÞ; ð5Þ

f �ðrÞ ’ ρ
HOMO

ðrÞ ð6Þ

The use of the two working Eqs. (5) and (6) which are
based on electronic densities of FMOs, should always be
checked against the working Eqs. (3) and (4) coming from
the first level of approximation.

More recently, Morell et al. [15, 16] found a third order,
i.e., a physical interpretation for a new LRD [17] for chem-
ical reactivity called dual descriptor (DD) Δf ðrÞ. To avoid
any confusion with finite difference approximation techni-
ques, the old notation, Δf ðrÞ , will be dropped and the
modern notation, f (2)(r), will be used hereafter.

This LRD is defined in terms of the derivative of f(r) with
respect to N. Through a Maxwell relation, the same descrip-
tor is interpreted as the variation of η with respect to υ(r).
The definition of f (2)(r) is shown as indicated by Morell et
al. [15, 16]:

f ð2ÞðrÞ ¼ @f ðrÞ
@N

� �
uðrÞ

¼ dη
duðrÞ

� �
N

; ð7Þ

where η is the molecular hardness, which measures the
resistance to charge transfer [2]. The DD satisfies the fol-
lowing restriction:ð
all space

f ð2ÞðrÞdr ¼ 0: ð8Þ

Additionally, and according to expressions given by Eqs.
(3) and (4), f (2)(r) is written as the difference between
nucleophilic and electrophilic Fukui functions [15]:

f ð2ÞðrÞ ’ f þðrÞ � f �ðrÞ ¼ ρ
Nþ1

ðrÞ � 2ρ
N
ðrÞ þ ρ

N�1
ðrÞ:

ð9Þ
The use of densities of FMOs provides an easier-to-

compute working equation:

f ð2ÞðrÞ ’ ρ
LUMO

ðrÞ � ρ
HOMO

ðrÞ : ð10Þ

The DD, by means of Eq. (9) or Eq. (10), allows one to
obtain simultaneously the preferred sites for nucleophilic

attacks f ð2ÞðrÞ > 0
� �

and the preferred sites for electrophilic

attacks f ð2ÞðrÞ < 0
� �

over the system at point r.
This LRD has acquired more importance because it

has demonstrated to be a robust tool with which to
correctly predict specific sites of nucleophilic and elec-
trophilic attacks much more efficiently than the Fukui
function by itself because the DD distinguishes true
nucleophilic and electrophilic sites. Several published
works have noted the outstanding capability of f (2)(r)
and all LRDs based on it [18–22]. Molecular symmetry
affects local reactivity and, as a consequence, the Fukui
function should conserve this symmetry, as shown by
Flores-Moreno [23]. Previously, Martínez [24] proposed
a simple procedure to take into account the frontier
molecular orbital degeneracy when using the FOA
[12, 14], so that f (2)(r) and any other local reactivity
descriptor depending on the DD may be properly
depicted as a 3-D map, thus allowing a local reactivity
isosurface adapted to the molecular symmetry to be
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obtained. A recent demonstration of this was published
in an article [25] in which the local reactivity of the
Buckminster fullerene was established by taking into
account the degeneracy in FMO mentioned above. A
concern about evaluation of the DD was broached by
Geerlings and coworkers [26–28], and the problem of
degeneracy in the Fukui function and DD was analyzed
by Cárdenas and coworkers [29] in the context of de-
generate ground states.

However, both levels of approximation, although
adapted to a molecules’ symmetry, apply extreme mod-
els to face the problem of depicting the DD. On the one
hand, the use of Eqs. (3) and (4) provides the most
accurate result possible, but at very high computational
cost and without knowing whether convergence will be
reached or not for a system with one more electron and
one less electron; on the other hand, the use of Eqs. (5)
and (6) leads to a faster result, but with the intrinsic
risk of misunderstanding the information generated due
to the simple approach of assuming that local reactivity
is guided only by the density of FMOs and thus
neglecting the possible effects of orbital relaxation.
The problem of taking orbital relaxation into account
has been broached by Ayers [30–32].

The present study proposes a couple of working equa-
tions for closed-shell and open-shell systems, which may be
understood as an extension of the second level of approxi-
mation in order to compute DD based on densities of FMOs
plus the contribution of densities of the remaining molecular
orbitals, both occupied and virtual. Taking this approach
increased the computational effort a little, but without in-
cluding the risk of performing quantum mechanical compu-
tations for a system with one more electron and one less
electron. Also, it includes the influence of the remaining
molecular orbitals over local reactivity. The latter may be
interpreted as an approximation to quantify orbital relaxa-
tion effects.

Dual descriptor expanded in terms of electronic densities
of molecular orbitals. Closed-shell systems

The following is based on articles published by Politzer and
coworkers [33–35], where the sum of the electronic density
weighted molecular orbital energies produced a concept
called average local ionization energy (ALIE). Assuming a
basis set of K molecular orbitals for a closed-shell system in
the ground state, and assuming that there is no degeneration
among them, then N/2 occupied molecular orbitals emerge,
following the order of lowest energy to highest energy
(Fig. 1). The i counter will range from 1 (LOMO) to N/2
(HOMO). Immediately, it can be deduced that N/2+1 will
be the LUMO, and, after i0N/2, the counter i will continue

ranging from N/2+1 (LUMO) to K (HUMO). On the other
hand, each molecular orbital ψi(r) implies an electronic

density ρ
i½ � ðrÞ � y iðrÞj j2 , therefore ρ

i½ � rð Þ stands for the

density of the ith-molecular orbital.
Note that the squared parenthesis in the subscript of ρ

i½ � ðrÞ
has been used in order to avoid any confusion between ρ

N
ðrÞ,

the total electronic density of the system conformed by N
electrons and ρ

N½ � ðrÞ, the electronic density of the Nth-molec-

ular orbital. Note that ρ
N
ðrÞ ¼ 2

PN=2

i¼1
y iðrÞj j2 � 2

PN=2

i¼1
ρ

i½ � ðrÞ
where the coefficient 2 corresponds to the occupation number;
it follows that:Z

ρ
i½ � ðrÞ dr ¼ 1;8 i 2 1 � � �Kf g

Nucleophilic Fukui function as an expansion of electronic
densities of virtual molecular orbitals

The following expression is proposed as a Fukui nucleo-
philic function. The energy of HUMO, "

K½ � , is used as a

reference value:

f þðrÞ ’
XK�1

i¼N=2þ1

cþ
i½ � ρ i½ � ðrÞ ð11Þ

where

cþ
i½ � ¼ "

K½ � � "
i½ �

� 	
�

XK�1

j¼N=2þ1

"
K½ � � "

j½ �

� 	8<
:

9=
;

�1

Fig. 1 Diagram of molecular orbital energies in a closed-shell system
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"
i½ � and "

j½ � stands for the energy of the ith -molecular

orbital and jth-molecular orbital, respectively. The reader
should note that each coefficient cþ

i½ � satisfies the condi-

tion 0 < cþ
i½ � < 1 which leads to the natural restriction for

the sum of all coefficients with i ranging from N=2þ 1
to K−1:

XK�1

i¼N=2þ1

cþ
i½ � ¼ 1:

This satisfies the normalization condition of the Fukui
function given by Eq. (2).

Eq. (11) is written explicitly as follows:

f þðrÞ ’ PK�1

i¼N=2þ1
cþ

i½ � ρ i½ � ðrÞ

f þðrÞ ’ "
K½ � �"

N=2þ1½ �

"
K½ ��"

N=2þ1½ �

� 	
þ "

K½ ��"
N=2þ2½ �

� 	
þ���þ "

K½ � �"
K�1½ �

� 	 � ρ
N=2þ1½ � ðrÞ þ � � �

� � � þ "
K½ ��"

K�1½ �

"
K½ � �"

N=2þ1½ �

� 	
þ "

K½ ��"
N=2þ2½ �

� 	
þ���þ "

K½ � �"
K�1½ �

� 	 � ρ
K�1½ � ðrÞ

The following relationship must always be satisfied:

1 >
"

K½ � � "
N=2þ1½ �PK�1

j¼N=2þ1
"

K½ � � "
j½ �

� 	 > � � � > "
K½ � � "

K�1½ �PK�1

j¼N=2þ1
"

K½ � � "
j½ �

� 	 > 0

ð12Þ
Unlike Eq. (5), and those adapted to the symmetry of

molecules as in the respective literature [24], thanks to cþ
i½ �

coefficients, Eq. (11) is adapted intrinsically to the mole-
cule’s symmetry. In fact, the working equations just men-
tioned constitute approximations of Eq. (11) as will be
demonstrated in the next paragraph. Thus, Eq. (5), together
with that proposed in 2009 [24], correspond to approxima-
tions coming from Eq. (11). This is shown as follows:

Demonstration: imagine a molecular system with a degree
of degeneration, p, in its virtual molecular orbitals; specifical-
ly, it presents a p–fold degenerated LUMO. That means:

"
K½ � � "

N=2þ1½ � ¼ "
K½ � � "

N=2þ2½ � ¼ � � � ¼ "
K½ � � "

N=2þp½ � ¼ "þ:

As a consequence, the sum of Eq. (11) may be decom-
posed as follows:

f þðrÞ ’ PK�1

i¼N=2þ1
cþ

i½ � ρ i½ � ðrÞ

’ PN=2þp

i¼N=2þ1
cþ

i½ � ρ i½ � ðrÞ þ
PK�1

i¼N=2þpþ1
cþ

i½ � ρ i½ � ðrÞ

’ "
K½ ��"

N=2þ1½ �PK�1

j¼N=2þ1

"
K½ � �"

j½ �

� 	 � ρ
N=2þ1½ � ðrÞ þ � � � þ "

K½ � �"
N=2þp½ �PK�1

j¼N=2þ1

"
K½ � �"

j½ �

� 	 � ρ
N=2þp½ � ðrÞ þ

PK�1

i¼N=2þpþ1
cþ

i½ � ρ i½ � ðrÞ

’ "þPK�1

j¼N=2þ1

"
K½ � �"

j½ �

� 	 � ρ
N=2þ1½ � ðrÞ þ � � � þ "þPK�1

j¼N=2þ1

"
K½ � �"

j½ �

� 	 � ρ
N=2þp½ � ðrÞ þ

PK�1

i¼N=2þpþ1
cþ

i½ � ρ i½ � ðrÞ

’ "þPK�1

j¼N=2þ1

"
K½ � �"

j½ �

� � � PN=2þp

i¼N=2þ1
ρ

i½ � ðrÞ þ
PK�1

i¼N=2þpþ1
cþ

i½ � ρ i½ � ðrÞ

The denominator of the first term can be split into
two parts:PK�1

j¼N=2þ1
"

K½ � � "
j½ �

� 	
¼ PN=2þp

j¼N=2þ1
"

K½ � � "
j½ �

� 	
þ PK�1

j¼N=2þpþ1
"

K½ � � "
j½ �

� 	

¼ p � "þ þ PK�1

j¼N=2þpþ1
"

K½ � � "
j½ �

� 	

According to the latter,

f þðrÞ ’ "þ � PK�1

j¼N=2þ1
"

K½ � � "
j½ �

� 	( )�1

� PN=2þp

i¼N=2þ1
ρ

i½ � ðrÞ þ
PK�1

i¼N=2þpþ1
cþ

i½ � ρ i½ � ðrÞ

’ "þ � p � "þ þ PK�1

j¼N=2þpþ1
"

K½ � � "
j½ �

� 	( )�1

� PN=2þp

i¼N=2þ1
ρ

i½ � ðrÞ þ
PK�1

i¼N=2þpþ1
cþ

i½ � ρ i½ � ðrÞ
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Based on inequality (12), in this last expression, consider
that cþ

i½ � ’ 0 when i ranges from N=2þ pþ 1 to K−1 along

with p � "þ � PK�1

j¼N=2þpþ1
"

K½ � � "
j½ �

� 	
. As a result, the equa-

tion used to obtain the nucleophilic Fukui function,
adapted to the symmetry according to the degree of
degeneration, is:

f þðrÞ ’ 1

p

XN=2þp

i¼N=2þ1

ρ
i½ � ðrÞ �

1

p

Xp
k¼1

ρ
LUMO k

ðrÞ

This equation, which was already suggested in 2009
[24], is an approximation of Eq. (11) in the case of a
p–fold degenerated LUMO. When p01, the classical Eq.
(5) is recovered because ρ

LUMO1
ðrÞ � ρ

LUMO
ðrÞ.

Electrophilic Fukui function as an expansion of electronic
densities of occupied molecular orbitals

A similar analysis leads to the expression of the electrophilic
Fukui function. The energy of LOMO, "

1½ � , is used as a

reference value:

f �ðrÞ ’
XN=2

i¼2

c�
i½ � ρ i½ � ðrÞ ð13Þ

where

c�
i½ � ¼ "

i½ � � "
1½ �

� 	
�

XN=2

j¼2

"
j½ � � "

1½ �

� 	( )�1

:

After developing the terms of Eq. (13) this turns out to be:

f �ðrÞ ’ PN=2

i¼2
c�

i½ � ρ i½ � ðrÞ
f �ðrÞ ’ "

2½ ��"
1½ �

"
2½ � �"

1½ �

� 	
þ "

3½ ��"
1½ �

� 	
þ���þ "

N=2½ ��"
1½ �

� 	 � ρ
2½ � ðrÞ þ � � �

� � � þ "
N=2½ ��"

1½ �

"
2½ � �"

1½ �

� 	
þ "

3½ ��"
1½ �

� 	
þ���þ "

N=2½ � �"
1½ �

� 	 � ρ
N=2½ � ðrÞ

And each c�
i½ � coefficient satisfies the condition 0 < c�

i½ �
< 1 thus leading to the restriction for the sum of all coef-
ficients of Eq. (13) with i ranging from 2 to N/2:

XN=2

i¼2

c�
i½ � ¼ 1

This also allows the normalization condition given by Eq.
(2) to be satisfied. Furthermore, the following relationship
will always be satisfied:

0 <
"

2½ � � "
1½ �PN=2

j¼2
"

j½ � � "
1½ �

� 	 <
"

3½ � � "
1½ �PN=2

j¼2
"

j½ � � "
1½ �

� 	 < � � �

� � � < "
N=2�1½ � � "

1½ �PN=2

j¼2
"

j½ � � "
1½ �

� 	 <
"

N=2½ � � "
1�½PN=2

j¼2
"

j½ � � "
1½ �

� 	 < 1;

As in the previous subsection, Eq.(13) is adapted intrin-
sically to the molecule’s symmetry due to c�

i½ � coefficients.

Together with that proposed in 2009 [24], Eq. (6) also
corresponds to approximations that come from Eq. (13),
demonstrated as follows:

Demonstration: imagine a molecular system with a de-
gree of degeneration, q, in its occupied molecular orbitals;
specifically, it presents a q–fold degenerated HOMO. That
means:

"
N=2½ � � "

1½ � ¼ "
N=2�1½ � � "

1½ � ¼ � � � ¼ "
N=2þ1�q½ � � "

1½ � ¼ "� :

f �ðrÞ ’ PN=2

i¼2
c�

i½ � ρ i½ � ðrÞ

’ PN=2�q

i¼2
c�

i½ � ρ i½ � ðrÞ þ
PN=2

i¼N=2þ1�q
c�

i½ � ρ i½ � ðrÞ

’ PN=2�q

i¼2
c�

i½ � ρ i½ � ðrÞ þ
"
N=2þ1�q½ ��"

1½ �PN=2

j¼2

"½j��"½1�

� 	 � ρ
N=2þ1�q½ � ðrÞ þ � � � þ "

N=2½ ��"
1½ �PN=2

j¼2

"
j½ � �"

1½ �

� 	 � ρ
N=2½ � ðrÞ

’ PN=2�q

i¼2
c�

i½ � ρ i½ � ðrÞ þ "�PN=2

j¼2

"
j½ ��"

1½ �

� 	 � ρ
N=2þ1�q½ � ðrÞ þ � � � þ "�PN=2

j¼2

"
j½ ��"

1½ �

� 	 � ρ
N=2½ � ðrÞ

’ PN=2�q

i¼2
c�

i½ � ρ i½ � ðrÞ þ "�PN=2

j¼2

"
j½ ��"

1½ �

� 	 � PN=2

i¼N=2þ1�q
ρ

i½ � ðrÞ

The denominator of the second term can also be split into
two parts:

PN=2

j¼2
"

j½ � � "
1½ �

� 	
¼ PN=2�q

j¼2
"

j½ � � "
1½ �

� 	
þ PN=2

j¼N=2þ1�q
"
½j�
� "

½1�

� 	

¼ PN=2�q

j¼2
"

j½ � � "
1½ �

� 	
þ q � "�

In consequence:

f �ðrÞ ’ PN=2�q

i¼2
c�

i½ � ρ i½ � ðrÞ þ "� � PN=2

j¼2
"

j½ � � "
1½ �

� 	( )�1

� PN=2

i¼N=2þ1�q
ρ

i½ � ðrÞ

’ PN=2�q

i¼2
c�

i½ � ρ i½ � ðrÞ þ "� � PN=2�q

j¼2
"

j½ � � "
1½ �

� 	
þ q � "�

( )�1

� PN=2

i¼N=2þ1�q
ρ

i½ � ðrÞ
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Similarly, after considering the approximations c�
i½ � ’ 0

when i ranges from 2 to N/2−q along with
PN=2�q

j¼2
"

j½ � � "
1½ �

� 	
� q � "� , the electrophilic Fukui function adapted to the
symmetry according to the degree of degeneration reported
in 2009 is re-obtained [24]:

f �ðrÞ ’ 1

q

XN=2

i¼N=2þ1�q

ρ
i½ � ðrÞ �

1

q

Xq
k¼1

ρ
HOMO k

ðrÞ:

As can be observed, this equation corresponds to that
reported in 2009 [24], which is an approximation of Eq. (13)
in case of a q-fold degenerated HOMO and when q01, the
classical expression given by Eq. (6) is recovered because
ρ

HOMO1
ðrÞ � ρ

HOMO
ðrÞ.

Dual descriptor as an expansion of electronic densities
of occupied and virtual molecular orbitals

Equations (11) and (13) allow us to propose a new, more
accurate, working equation for the DD:

f ð2ÞðrÞ ’
XK�1

i¼N=2þ1

cþ
i½ � ρ i½ � ðrÞ �

XN=2

i¼2

c�
i½ � ρ i½ � ðrÞ ð14Þ

This expression satisfies the restriction given by Eq. (8).
Based on the mathematical demonstrations concerning

the degeneration phenomenon that can appear in FMOs as
discussed above, it is very clear that the mathematical ex-
pression given by [24]:

f ð2ÞðrÞ ’ 1

p

Xp
k¼1

ρ
LUMO k

ðrÞ � 1

q

Xq
k¼1

ρ
HOMO k

ðrÞ;

is an approximation of Eq. (14). The classical expression
given by Eq. (10) is recovered when p=q=1 because ρ

LUMO1

ðrÞ � ρ
LUMO

ðrÞ and ρ
HOMO1

ðrÞ � ρ
HOMO

ðrÞ.

Dual descriptor expanded in terms of electronic densities
of molecular orbitals. Open-shell systems

Like the closed-shell case, in open-shell systems there will
be a basis set of Kα molecular orbitals of α type and Kβ

molecular orbitals of β type as depicted in Fig. 2. The
system is going to contain N0Nα+Nβ electrons, thus
meaning Nα and Nβ occupied molecular orbitals of α and
β type, respectively. The criteria used to choose proper
expressions for the nucleophilic and electrophilic Fukui
functions to use in open-shell systems are described in more
detail in [13].

Within this context, as explained in [13], the i counter
will range from 1 (α–LOMO) to Nα (α–HOMO); after
α–HOMO, the i counter will take into account virtual
β molecular orbitals ranging from Nβ+1 (β–LUMO) to
Kβ (β–HUMO).

Then
PNa

i¼1
ρa

i½ � ðrÞ þ
PNb

i¼1
ρb

i½ � ðrÞ ¼ ρ
N
ðrÞ , the total electronic

density of the system conformed byN ¼ Na þ Nb electrons.
In addition,

Z
ρa

i½ � ðrÞ dr ¼ 1; 8 i 2 1 � � �Kaf g
Z

ρ b
i½ � ðrÞ dr ¼ 1; 8 i 2 1 � � �Kb


 �

Nucleophilic Fukui function as an expansion of electronic
densities of virtual molecular orbitals

Following an identical procedure to that established to de-
fine the mathematical expression of the nucleophilic Fukui
function in closed-shell systems, in the case of open-shell
systems, the following equation is suggested:

f þΔNS<0ðrÞ ’
XKb�1

i¼Nbþ1

cþ
i½ �;bρ

b
i½ � ðrÞ ð15Þ

where

cþ
i½ �;b ¼ "b

Kb½ � � "b
i½ �

� �
�

XKb�1

j¼Nbþ1

"b
Kb½ � � "b

j½ �

� �( )�1

:

Please refer to [13] for a full explanation of the notation
ΔNS < 0. Note that the label [Nβ+1] corresponds to the β–
LUMO and [Kβ] is the very last virtual (or unoccupied)
molecular orbital (β–HUMO). The energy of β–HUMO,
"b

Kb½ � , is used as a reference value.

The following relationship will always be satisfied:

1 >

"b
Kb½ � � "b

Nbþ1½ �PKb�1

j¼Nbþ1
"b

Kb½ � � "b
j½ �

� � > � � � >
"b

Kb½ � � "b
Kb�1½ �PKb�1

j¼Nbþ1
"b

Kb½ � � "b
j½ �

� �
> 0

The restriction 0 < cþi½ �;b < 1 turns out be in the following

restriction for all i ranging from Nβ+1 to Kβ−1:

XKb�1

i¼Nbþ1

cþ
i½ �;b ¼ 1;
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so that the normalization condition given by Eq. (2) is
satisfied. Since the definition of Eq. (15) is the same math-
ematically as the definition given by Eq. (11), no analysis of
coefficients cþ

i½ �;b and degeneracies on β frontier molecular

orbitals is needed in this subsection.

Electrophilic Fukui function as an expansion of electronic
densities of virtual molecular orbitals

Similarly to electrophilic Fukui function in closed-shell
systems, the proposed equation for open-shell systems is
as follows:

f �ΔNS<0ðrÞ ’
XNa

i¼2

c�
i½ �;aρ

a
i½ � ðrÞ ð16Þ

where

c�
i½ �;a ¼ "a

i½ � � "a
1½ �

� 	
�

XNa

j¼2

"a
j½ � � "a

1½ �

� 	( )�1

The energy of α–LOMO, "a
1½ �, is used as a reference value.

The following relationship is satisfied:

0 <
"a

2½ � � "a
1½ �PNa

j¼2
"a

j½ � � "a
1½ �

� 	 <
"a

3½ � � "a
1½ �PNa

j¼2
"a

j½ � � "a
1½ �

� 	 < � � �

� � � <
"a

Na�1½ � � "a
1½ �PNa

j¼2
"a

j½ � � "a
1½ �

� 	 <
"a

Na½ � � "a
1½ �PNa

j¼2
"a

j½ � � "a
1½ �

� 	 < 1

And each coefficient satisfies the condition: 0 < c�
i½ � < 1.

Along with the normalization condition of the Fukui func-
tion given by Eq. (2), this provides the restriction for the
sum of all coefficients of Eq. (16):

XNa

i¼2

c�
i½ �;a ¼ 1

Dual descriptor as an expansion of electronic densities
of occupied and virtual molecular orbitals

The corresponding equation is:

f ð2ÞΔNS<0ðrÞ ’
XKb�1

i¼Nbþ1

cþ
i½ �;bρ

b
i½ � ðrÞ �

XNa

i¼2

c�
i½ �;aρ

a
i½ � ðrÞ ð17Þ

, which satisfies the restriction given by Eq. (8).
Although there were no mathematical demonstrations

carried out in the subsections above in order to show that
the equations of the nucleophilic and electrophilic Fukui
functions adapted to the molecular symmetry of open-shell
systems as reported in a previous article in 2011 [13] corre-
spond to approximations of Eqs. (15) and (16), respectively,
the algebraic analysis would be the same as was exposed
here, so it is also possible to state that the mathematical
expression that appears in [13]:

f ð2ÞΔNS<0ðrÞ ’
1

pb

Xpb
k¼1

ρb
LUMO k

ðrÞ � 1

qa

Xqa
k¼1

ρa
HOMO k

ðrÞ;

is an approximation of Eq. (17) as well.

Fig. 2 Diagram of molecular
orbital energies in an open-shell
system
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Applications

The emphasis will be focused on closed-shell systems.
Acetylene (or ethyne; H–C≡C–H) and fluoroethyne
(F–C≡C–H) molecules were optimized geometrically
without symmetry restrictions according to the Schlegel
algorithm [36] at the DFT level of theory. The func-
tionals used in these calculations were the Becke-3 for
exchange and Lee-Yang-Parr for correlation [37–40].
The basis set 6–31 G(d) [41–43] was used. The fre-
quency calculation was performed at the same level of
theory in order to ensure that each optimized structure
corresponds to an energy minimum. All calculations
were carried out using GAUSSIAN 09 [44] code. 3-D
maps of molecular electrostatic potential (MEP) and
DD were generated by using the cubegen complemen-
tary code of the GAUSSIAN 09 software package.

When the FMOA is accurate enough, the DD is well
represented as depicted by Fig. 3, where F–C≡C–H is used
as an example. This molecule belongs to the C∞h point
group symmetry and, as can be observed, any 3-D map of
the DD must belong to the A1 totally symmetric irreducible
representation. The finite difference approximation (FDA)
allows one to realize that FMOA gives an acceptable 3-D
map of the DD. On the other hand, the H–C≡C–H molecule
belongs to the D∞h point group symmetry; consequently,
any 3-D map of the DD must also belong to the Σþ

g totally

symmetric irreducible representation. Thus all 3-D maps
satisfy this symmetry requirement, but this molecule reveals
that FMOA differs noticeably from the FDA as depicted in
Fig. 4. This might be a consequence of the orbital relaxation
not taken into account by the FMOA. The aim of this
section is to demonstrate that the intermediate level of

approximation proposed here to calculate the DD should
provide a similar 3-D map to that depicted by FDA provided
that the FDA is an exact representation of the DD. Conse-
quently, the acetylene molecule will be used as a test mol-
ecule in order to visualize the result of the DD built from the
approximation proposed here for closed-shell systems
through the use of Eq. (14).

Fig. 3 Dual descriptor (DD) of fluoroethyne (F–C≡C–H). FDA Finite
difference approximation, FMOA frontier molecular orbital approxi-
mation. The light-blue colored atom is flourine; the carbon atoms are
depicted in grey color and the white colored atom is hydrogen. Dual
descriptor (DD), f (2)(r) is represented as a 3–D map of two colors:
when f (2)(r) > 0 implies a dark colored lobe thus indicating that
nucleophilic attacks will be oriented toward there; when f (2)(r) < 0
implies a light colored lobe thus indicating that electrophilic attacks
will be oriented toward there. Two different ways to obtain DD have
been depicted in this figure: the first row shows the FDA; the second
one shows the FMOA. All isosurfaces have been depicted at 0.001 a.u.

Fig. 4 DD of ethyne or acetylene (H–C≡C–H). Dual descriptor (DD),
f (2)(r) is represented as a 3–D map of two colors: when f (2)(r) > 0
implies a dark colored lobe thus indicating that nucleophilic attacks
will be oriented toward there; when f (2)(r) < 0 implies a light colored
lobe thus indicating that electrophilic attacks will be oriented toward
there. Two different ways to obtain DD have been depicted in this
figure: the first row shows the FDA; the second one shows the FMOA.
All isosurfaces have been depicted at 0.001 a.u.

Fig. 5 Front (left) and side (right) views of the acetylene molecule
along with its respective molecular electrostatic potential (MEP) (top
row) and DD (lower rows). The MEP is represented as a 3-D map
ranging from negatives values (red) to positive values (blue), that mean
V ðrÞf gmin � V ðrÞ � V ðrÞf gmax where V ðrÞf gmin ¼ �4:405 � 10�2

a.u. and V ðrÞf gmax ¼ 4:405 � 10�2 a.u. A red colored zone indicates a
dominant effect of electrons (electrically negative), green colored
zones indicate sites where the effects of nuclei and electrons are
balanced, and a blue colored zone shows sites where the effect of
nuclei is dominant (electrically positive). DD, f(2)(r) is represented as
a 3-D map of two colors: dark colored lobe f ð2ÞðrÞ > 0 implying
that nucleophilic attacks will be oriented here; light colored lobe
f ð2ÞðrÞ < 0 implying that electrophilic attacks will be oriented
here. Three different ways of obtaining DD are depicted: second
row FMOA; third row FDA, bottom row proposed way to depict
DD. All isosurfaces have been depicted at 0.001 a.u.
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A closed-shell system like acetylene requires the use of
Eq. (14) to generate a 3-D map of the DD. All coefficients
cþ

i½ � and c�
i½ � were then generated by hand and electronic

densities of occupied and virtual molecular orbitals were
computed through the use of the cubegen and cubman
computational codes coming from the GAUSSIAN 09 [44]
code. After using this equation, Fig. 5 allows the FMOA,
the FDA and the present intermediate level of approxima-
tion to be compared. As can be observed, all approximations
satisfy the symmetry requirements. The MEP, which is an
observable, has been used as a function to verify symmetry
requirements. This molecule presents a two-fold HOMO
and a two-fold LUMO, respectively.

Figure 5 shows a similarity between the DD generated by
means of Eq. (14) and that generated by FDA, thus validating
the approach proposed in this article. The DD obtained under
the FMOA provides only one negative phase located around
the triple bond, meanwhile Eq. (14) generates a DDwith more
than one negative region. This means that, in addition to the
surroundings of the triple bond, there are small negative
regions that are localized near the hydrogen atoms, but in
general electrophilic attacks are preferred on the triple bond.
The MEP also indicates that electrophilic attacks are preferred
to be carried out on the triple bond, so that electrophilic attacks
on the acetylene molecule are supported by electrostatic and
covalent reasons. However, a difference between the shape of
the DD based on the FMOA and that based on Eq. (14) as
proposed here can be noted.

Continuing with the analysis, Eq. (14) reveals positive
regions localized over hydrogen atoms along axial axis, thus
implying that nucleophilic attacks could be oriented along
the axial axis of acetylene towards hydrogen atoms, this is
not seen when using the FMOA. Note that the MEP also
reveals that nucleophilic attacks will be oriented toward
hydrogen atoms along the same axial axis thus indicating
that nucleophilic attacks on hydrogen atoms are also sup-
ported by covalent and electrostatic reasons.

Conclusions

Working Eqs. (14) and (17) have been proposed here to
obtain a much better representation of the DD than with
conventional equations based solely on FMO densities be-
cause the influence of the electronic densities of the remain-
ing molecular orbitals has been included by means of two
types of coefficients: cþ

i½ � and c�
i½ � in the case of closed-shell

systems andcþ
i½ �;b andc

�
i½ �;a in the case of open-shell systems. In

addition, these equations have the advantage that any pos-
sible degeneracy or quasi-degeneracy in FMOs is taken into
account without the user needing to perform a previous
analysis. Equations (14) and (17) are useful for all types of

molecular systems, whether or not they exhibit FMO degen-
eracies, and the reader is invited to prove these equations on
molecular systems such as diatomic molecules, boranes,
fullerenes, and even systems based on transition metals that
exhibit quasi-degeneration in their molecular orbitals. Such
degeneration is no longer a concern for the user because,
unlike equations reported in the literature [13, 24] where the
user would have to take into account explicitly the degree of
degeneration with the aim of assigning the correct number
for p and q in a closed-shell system (or pb and qa in an open-
shell system), Eqs. (14) and (17) are able to take into
account automatically the phenomenon of degeneration with
the advantage of including the contribution to local reactiv-
ity of the remaining molecular orbitals (except LOMO and
HUMO) to properly describe the local reactivity of the
system under study.

Since open-shell systems imply a set of working equations
that combine four possible configurations (α−α, α−β, β−α
and β−β), Eq. (17), corresponding to the β−α and three
remaining configuration (not examined in this article) should
be analyzed in future works.

Finally, a general warning that the use of the approaches
proposed in this article for closed- and open-shell systems is
based on the fact that the nucleophilic Fukui function is
strongly basis-set-dependent because the HUMO energy
diverges strongly as the size of the basis set decreases;
therefore, some kind of mathematical strategy is required
to deplete such basis set dependence. This task is ongoing.
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